If sum of first five terms of an Ap is equal to sum of first q yerms then show that sum of first p+q terms is zero
Answers
Answered by
1
Given that sum of p terms of an AP = sum of first q terms of an AP.
i.e sp = sq ------------------ (1)
We know that sum of n terms of an AP = n/2(2a + (n - 1) * d).
Then the sum of p terms of an AP = p/2(2a + (p - 1) * d) ----- (1)
Then the sum of 1 terms of an AP = 1/2(2a + (q - 1) * d) ------ (2).
Substitute (2) & (3) in (1), we get
p/2(2a + (p - 1) * d) = q/2(2a + (q - 1) * d)
p(2a + (p - 1) * d) = q(2a + (q - 1) * d)
2pa + p(p-1) * d = 2qa + q(q - 1) * d
2pa + p(p-1) * d - 2qa - q(q - 1) * d
2pa - 2qa + p(p - 1) * d - q(q - 1) * d
2pa - 2qa + (p^2 - p) * d - (q^2 - q) * d
2a(p - q) + d(p^2 - p - q^2 + q) = 0
2a(p - q) + d((p^2 - q^2) - (p - q)) = 0
2a(p - q) + d((p - q)(p + q) - (p - q)) = 0
(p - q)(2a + d(p + q) - 1))) = 0
2a + ((p + q) - 1) * d = 0
Multiply both sides with p+q/2
(p+q/2) (2a + (p + q) - 1) * d = 0. ---- (In the form of n/2(2a + (n - 1) * d))
Therefore the sum of first (p + q) terms is zero.
Hope this helps!
i.e sp = sq ------------------ (1)
We know that sum of n terms of an AP = n/2(2a + (n - 1) * d).
Then the sum of p terms of an AP = p/2(2a + (p - 1) * d) ----- (1)
Then the sum of 1 terms of an AP = 1/2(2a + (q - 1) * d) ------ (2).
Substitute (2) & (3) in (1), we get
p/2(2a + (p - 1) * d) = q/2(2a + (q - 1) * d)
p(2a + (p - 1) * d) = q(2a + (q - 1) * d)
2pa + p(p-1) * d = 2qa + q(q - 1) * d
2pa + p(p-1) * d - 2qa - q(q - 1) * d
2pa - 2qa + p(p - 1) * d - q(q - 1) * d
2pa - 2qa + (p^2 - p) * d - (q^2 - q) * d
2a(p - q) + d(p^2 - p - q^2 + q) = 0
2a(p - q) + d((p^2 - q^2) - (p - q)) = 0
2a(p - q) + d((p - q)(p + q) - (p - q)) = 0
(p - q)(2a + d(p + q) - 1))) = 0
2a + ((p + q) - 1) * d = 0
Multiply both sides with p+q/2
(p+q/2) (2a + (p + q) - 1) * d = 0. ---- (In the form of n/2(2a + (n - 1) * d))
Therefore the sum of first (p + q) terms is zero.
Hope this helps!
Answered by
0
HOPE IT HELPS YOU.......!!!✌️
ANSWER:;
Attachments:
Similar questions