Math, asked by manasavenkatesh1204, 1 month ago

if sum of first n terms of an Ap is Sn=3n^2+n, then its 3rd term is?​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

↝ Sum of the first n terms of an AP is

\rm :\longmapsto\:S_{n} =  {3n}^{2} + n

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

So, on substituting the value, we get

\rm :\longmapsto\:\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg) =  {3n}^{2} + n

\rm :\longmapsto\:\dfrac{\cancel n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg) =\cancel n({3n}+ 1)

\rm :\longmapsto\:2a + nd - d = 6n + 2

\rm :\longmapsto\:(2a - d) + nd = 6n + 2

↝ On comparing both sides, we get

\bf\implies \:d = 6

and

\rm :\longmapsto\:2a - d = 2

\rm :\longmapsto\:2a - 6 = 2

\rm :\longmapsto\:2a = 2 + 6

\rm :\longmapsto\:2a = 8

\bf\implies \:a \:  =  \: 4

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

↝ 3ᵗʰ term is,

\rm :\longmapsto\:a_3 = a + (3 - 1)d

\rm :\longmapsto\:a_3 = a + 2d

↝ On substituting the values of a and d, we get

\rm :\longmapsto\:a_3 = 4 + 2(6)

\rm :\longmapsto\:a_3 = 4 +12

\bf :\longmapsto\:a_3 = 16

Similar questions