Math, asked by mansithestar2005, 11 months ago

if sum of roots of equation ax^2+bx+c=0 is equal to their product, then find the value of b+c.​

Answers

Answered by sg6671
2

Answer:

zero

Step-by-step explanation:

hope it helps !

if any queries, can ask in comments !

Attachments:
Answered by Brâiñlynêha
24

Given :-

\sf ax^2+bx+c=0\\ \\\dashrightarrow \sf \alpha+\beta= \alpha \beta

To find :-

◆ b+c

A.T.Q :-

We know that ax^2+bx+c =0

\dashrightarrow\tt a= Coefficient\ of \ x^2\\ \\ \dashrightarrow \tt b= coefficient\ of \ x \\ \\ \dashrightarrow \tt c= constant\ term

\longmapsto\sf \alpha+\beta= \dfrac{-b}{a}

\longmapsto\sf \alpha \beta= \dfrac{c}{a}

So ,

\longmapsto\sf \alpha+\beta= \alpha \beta\\ \\ \longmapsto\sf Put \:the\: values \\ \\ \longmapsto\sf \dfrac{-b}{\cancel{a}}=\dfrac{c}{\cancel{a}}\\ \\ \sf\:\dag a\:\: will \ be \ cancelled\\ \\ \longmapsto\sf -b=c

\boxed{\sf{-b=c}}

  • We have to find the value of b+c

\dashrightarrow\tt  b+ c \ \ [ put \ (-b ) \ \  in \ place \ of \ c ]\\ \\\dashrightarrow \tt b-b\\ \\ \dashrightarrow\tt 0

\bigstar{\boxed{\sf{b+c=0}}}

Similar questions