Math, asked by pallomabhat, 10 months ago

If sum of the roots of an equation is 6 and one of the roots is 3-root 5,then what is the equation?

Answers

Answered by raushan6198
3

Step-by-step explanation:

let \: the \: roots \: are \:  \alpha \:  \:  \: and \:  \:  \:  \:  \beta  \\  \alpha  +  \beta  = 6 \\  \\  \alpha  = 3 \sqrt{5}  \\  \\  \alpha  +  \beta  = 6 \\  =  > 3 \sqrt{5}  +  \beta  = 6 \\  =  >  \beta  = 6 - 3 \sqrt{5}  \\  \\ required \: quadratic \: equation \: is \:  \\  \\  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  = 0 \\  =  >  {x}^{2}  - (3 \sqrt{5}  + 6 - 3 \sqrt{5} )x + 3 \sqrt{5} (6 - 3 \sqrt{5} ) = 0 \\  =  >  {x}^{2}  - 6x + 18 \sqrt{5}  - 9 \sqrt{25}  = 0 \\  =  >  {x}^{2}  - 6x + 18 \sqrt{5}  - 9 \times 5 = 0 \\  =  >  {x}^{2}  - 6x - 45 + 18 \sqrt{5}  = 0

Answered by aseemalatheef
0

Answer:

x2-6x+9=0

Step-by-step explanation:

r1+r2 = 6

r2 = 3-root5

r1 = 3+root 5

alpha + beta = -b/a

alpha*beta = c/a

x2-6x+9=0

Similar questions