If tan 0 + sin 0 = m and tan0-sin 0 = n, show that : m^2 - n^2 = 4√m√n
Answers
Answered by
9
Tanθ+sinθ=m
tanθ-sinθ=n
∴ m+n=tanθ+sinθ+tanθ-sinθ=2tanθ
m-n=tanθ+sinθ-tanθ+sinθ=2sinθ
mn=(tanθ+sinθ)(tanθ-sinθ)
=tan²θ-sin²θ
∴, m²-n²
=> (m+n)(m-n)
=> 2tanθ.2sinθ
=> 4sinθtanθ
4√mn
=> 4√(tan²θ-sin²θ)
=> 4√(sin²θ/cos²θ-sin²θ)
=> 4√sin²θ(1/cos²θ-1)
=> 4sinθ√(1-cos²θ)/cos²θ
=> 4sinθ/cosθ√sin²θ [∵, sin²θ+cos²θ=1]
=> 4sinθtanθ
∴ LHS=RHS (proved)
Answered by
2
Step-by-step explanation:
this is the answer to ur question
Attachments:
Similar questions