Math, asked by Anonymous, 4 months ago

If tan α = 1/√3 and sin β = 1/√2 , find α + β.

Grade 10

Answers

Answered by ryanhans200
13
a = alpha
b = beta

Tan a = 1/root3
= a is 30 degree (tan 30 = 1/root3)

sin b = 1/root2
= b is 45 degree (sin 45 = 1/root2)

So
a+b = 30 + 45 = 75

Ans. 75

I hope it helps, hit a like!
Cheers!
Answered by Anonymous
9

Given:

 \sf \large \: \circ \:  \:  \:  Tan\:\alpha=\frac{1}{ \sqrt{3} }   \\  \\  \large \sf\circ   \:  \:  \: Sin \beta =  \frac{1}{ \sqrt{2} }

To find:

 \sf \large \circ \:  \:  \:  \:  \bold\alpha+\beta

Solution:

 \large \sf \: Tan  \: \alpha  =  \frac{1}{ \sqrt{3} } \\   \\  \sf \large as \: we \: know \: that \: tan \: 30 \degree =  \frac{1}{ \sqrt{3} }  \\  \\  \large\sf \large \underline{ \boxed{ \sf \pink{ so \:  \angle \:  \alpha  = 30 \degree}}}

 \sf \large \: Sin  \: \beta= \frac{1}{ \sqrt{2} }  \\  \\  \sf \large as \: we \: know \: that \: sin \: 45 \degree =  \frac{1}{ \sqrt{2} }  \\  \\ \sf \large  \underline{ \boxed{ \sf \red{hence \:  \beta  = 45 \degree}}}

 \sf \large \alpha  +  \beta   \\  \\  \sf \large 30 \degree + 45 \degree \\  \\  \large \underline{  \boxed{ \sf \blue{  \implies75 \degree}}}

Similar questions