Math, asked by riishi2, 6 months ago

If tanθ=1/√3 find the value of sin θ

Answers

Answered by pulakmath007
16

SOLUTION

GIVEN

 \displaystyle \sf{  \tan \theta =  \frac{1}{ \sqrt{3} }  }

TO DETERMINE

 \displaystyle \sf{  \sin \theta  }

EVALUATION

USING GENERAL SOLUTION

 \displaystyle \sf{  \tan \theta =  \frac{1}{ \sqrt{3} }  }

 \implies \displaystyle \sf{  \tan \theta =   \tan  \frac{\pi}{6}   }

 \displaystyle \sf{   \theta =  n\pi +  \frac{\pi}{6}   } \:  \: where \: n \:  = 0,  \pm \: 1,\pm 2,....

CASE : 1

 \sf{ \underline{If \:   \: \theta \:   \: is  \: in \:  1st \:  quadrant} : }

Then

 \displaystyle \sf{    \sin\theta =  sin \frac{\pi}{6}   } \:

 \implies  \displaystyle \sf{    \sin\theta =  \frac{1}{2}    } \:

CASE : 2

 \sf{ \underline{If \:   \: \theta \:   \: is  \: in \:  3rd \:  quadrant} : }

 \displaystyle \sf{    \sin\theta =   - sin \frac{\pi}{6}   } \:

  \implies\displaystyle \sf{    \sin\theta =   -  \frac{1}{2}    } \:

USING PRINCIPAL VALUE

 \displaystyle \sf{  \tan \theta =  \frac{1}{ \sqrt{3} }  }

 \implies \displaystyle \sf{  \tan \theta =   \tan  \frac{\pi}{6}   }

 \implies \displaystyle \sf{   \theta =    \frac{\pi}{6}   }

So

\displaystyle \sf{   \sin \theta  }

\displaystyle \sf{    =   \sin \frac{\pi}{6}   }

 = \displaystyle \sf{   \frac{1}{2}    }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If 3x=cosecθ and 3/x=cotθ,

then find the value of 3(x²-1/x²)

https://brainly.in/question/21134289

Similar questions