Math, asked by anushkasharma96012, 4 months ago

if tan-1(4/3)=x,fine the value of cos x​

Answers

Answered by BrainlyPopularman
19

GIVEN :

 \\\implies\bf\tan^{ - 1}(4/3) = x\\

TO FIND :

 \\\implies\bf Value \:  \: of \:  \:  \cos(x) =?\\

SOLUTION :

 \\\implies\bf\tan^{ - 1}(4/3) = x\\

 \\\implies\bf \tan \{\tan^{ - 1}(4/3)  \}= \tan\{x\}\\

 \\\implies\bf 4/3= \tan\{x\}\\

 \\\implies\bf \tan(x) =  \dfrac{4}{3}\\

• We know that –

 \\\implies \large{ \boxed{\bf \tan(x) =  \dfrac{ \sin(x) }{ \cos(x) }}}\\

• So that –

 \\\implies\bf \dfrac{ \sin(x) }{ \cos(x) } =  \dfrac{4}{3}\\

• We also know that –

 \\\implies \large\bf{ \boxed{\sin^{2} ( \theta) +  { \cos}^{2}( \theta) = 1}}\\

• So that –

 \\\implies\bf \dfrac{ \sqrt{1 -  \cos^{2} (x) } }{ \cos(x) } =  \dfrac{4}{3}\\

 \\\implies\bf 3\sqrt{1 -  \cos^{2} (x)}=4\cos(x)\\

• Square on both sides –

 \\\implies\bf 9(1 -  \cos^{2} (x))=16\cos^{2} (x)\\

 \\\implies\bf 9 -9\cos^{2} (x)=16\cos^{2} (x)\\

 \\\implies\bf 9=16\cos^{2} (x) +9\cos^{2} (x)\\

 \\\implies\bf 9=25\cos^{2} (x) \\

 \\\implies\bf 25\cos^{2} (x) = 9\\

 \\\implies\bf\cos^{2} (x) = \dfrac{9}{25} \\

 \\\implies\bf\cos(x) = { \sqrt{\dfrac{9}{25}}}\\

 \\\implies \large \red{ \boxed{\bf\cos(x) = \pm\dfrac{3}{5}}}\\

Answered by Anonymous
2

GIVEN :–

 \\\implies\bf\tan^{ - 1}(4/3) = x\\

TO FIND :–

 \\\implies\bf Value \:  \: of \:  \:  \cos(x) =?\\

SOLUTION :–

 \\\implies\bf\tan^{ - 1}(4/3) = x\\

 \\\implies\bf \tan \{\tan^{ - 1}(4/3)  \}= \tan\{x\}\\

 \\\implies\bf 4/3= \tan\{x\}\\

 \\\implies\bf \tan(x) =  \dfrac{4}{3}\\

• We know that –

 \\\implies \large{ \boxed{\bf \tan(x) =  \dfrac{ \sin(x) }{ \cos(x) }}}\\

• So that –

 \\\implies\bf \dfrac{ \sin(x) }{ \cos(x) } =  \dfrac{4}{3}\\

• We also know that –

 \\\implies \large\bf{ \boxed{\sin^{2} ( \theta) +  { \cos}^{2}( \theta) = 1}}\\

• So that –

 \\\implies\bf \dfrac{ \sqrt{1 -  \cos^{2} (x) } }{ \cos(x) } =  \dfrac{4}{3}\\

 \\\implies\bf 3\sqrt{1 -  \cos^{2} (x)}=4\cos(x)\\

• Square on both sides –

 \\\implies\bf 9(1 -  \cos^{2} (x))=16\cos^{2} (x)\\

 \\\implies\bf 9 -9\cos^{2} (x)=16\cos^{2} (x)\\

 \\\implies\bf 9=16\cos^{2} (x) +9\cos^{2} (x)\\

 \\\implies\bf 9=25\cos^{2} (x) \\

 \\\implies\bf 25\cos^{2} (x) = 9\\

 \\\implies\bf\cos^{2} (x) = \dfrac{9}{25} \\

 \\\implies\bf\cos(x) = { \sqrt{\dfrac{9}{25}}}\\

 \\\implies \large \red{ \boxed{\bf\cos(x) = \pm\dfrac{3}{5}}}\\

Similar questions