If α = tan⁻¹ , then prove that x² = sin 2α.
Answers
Answered by
1
Answer:
x² = Sin2α
Step-by-step explanation:
α = Tan⁻¹ ( (√(1 + x²) - √(1 - x²) ) / (√(1 + x²) + √(1 - x²) ))
=>
Tanα = ( (√(1 + x²) - √(1 - x²) ) / (√(1 + x²) + √(1 - x²) ))
Squaring both sides
=> Tan²α = ( 2 - 2√(1 - x⁴) ) /( 2 + 2√(1 - x⁴) )
=> Tan²α = ( 1 - √(1 - x⁴) ) /( 1 + √(1 - x⁴) )
Adding 1 both sides
=> 1 + Tan²α = ( 1 - √(1 - x⁴) ) /( 1 + √(1 - x⁴) ) + 1
=> Sec²α = 2 / ( 1 + √(1 - x⁴) )
=> Cos²α = ( 1 + √(1 - x⁴) )/2
=> 2Cos²α = 1 + √(1 - x⁴)
=> 2Cos²α - 1 = √(1 - x⁴)
=> Cos2α = √(1 - x⁴)
=> Cos²2α = 1 - x⁴
=> x⁴ = 1 - Cos²2α
=> x⁴ = Sin²2α
Taking square root both sides
=> x² = Sin2α
QED
Proved
Similar questions