If tan⁻¹ x + tan⁻¹ y + tan⁻¹ z = π, then prove that x + y + z = xyz.
Answers
Answered by
2
Answer:
Step-by-step explanation:
Hope. It will help u ....
Name Harshit
Attachments:
Littleboyaaditya:
r u there
Answered by
5
Solution :
i ) Let tan^-1 x = A
=> x = tanA
ii ) tan^-1 y = B
=> y = tan B
iii ) tan^-1 z = C
=> z = tanC
Given A + B + C = π
=> A + B = π - C
=> tan( A + B ) = tan( π - C )
=> ( tanA + tanB )/(1-tanAtanB ) = -tanC
=> tanA+tanB = -tanC + tanAtanBtanC
=> tanA+tanB+tanC = tanAtanBtanC
=> x + y + z = xyz
i ) Let tan^-1 x = A
=> x = tanA
ii ) tan^-1 y = B
=> y = tan B
iii ) tan^-1 z = C
=> z = tanC
Given A + B + C = π
=> A + B = π - C
=> tan( A + B ) = tan( π - C )
=> ( tanA + tanB )/(1-tanAtanB ) = -tanC
=> tanA+tanB = -tanC + tanAtanBtanC
=> tanA+tanB+tanC = tanAtanBtanC
=> x + y + z = xyz
Similar questions