Math, asked by ankush761, 3 months ago

If tan^2 theta + cot^2 theta = 66/25 find the value of tan theta - cot theta​

Answers

Answered by psupriya789
0

tan²θ + cot²θ =   \frac{66}{25}

(tanθ + cotθ) (tanθ - cotθ) =  \frac{66}{25}

(tanθ - cotθ) =   \frac{66}{25} × 1/ (tanθ + cotθ)

(tanθ - cotθ) =  \frac{66}{25} × 1/ (sinθ/cosθ + cosθ/sinθ)

(tanθ - cotθ) =   \frac{66}{25} × 1 / (sin²θ + cos²θ/ sinθ cosθ)

(tanθ - cotθ) =   \frac{66}{25} × 1 / (1/ sinθ cosθ)

(tanθ - cotθ) =   \frac{66}{25} × 1 × sinθ cosθ

(tanθ - cotθ) =   \frac{66}{25}  × sinθ cosθ

hope it helps u

_________________________________________________________

LEARN MORE :-

If tan theta + cot theta = 5 , then find tan square theta + cot square theta...…

https://brainly.in/question/3145296

Similar questions