Math, asked by Raj9614, 9 months ago

if tan^2A+cot^2A=10÷3, then find the value of tanA+cotA, tanA-cotA.Also find the value of tanA​

Attachments:

Answers

Answered by Anonymous
2

 tan²O + Cot²O = \frac{10}{3} ----(1)

 tan²O + Cot²O + 2 = \frac{10}{3} + 2

 (tanO + CotO)² = \frac{10}{3} + \frac{6}{3}

 (tanO + CotO)² = \frac{16}{3}

 (<strong>tanO + CotO) = \frac{4}{√3} -----(2)

On subtracting 2 from eq.(1)

 tan²O + Cot²O - 2 = \frac{10}{3} - 2

 (tanO - CotO)² = \frac{10}{3} - \frac{6}{3}

 (tanO - CotO)³ = \frac{4}{3}

 <strong>(tanO - CotO) = \frac{2}{√3}</strong>-----(3)

Now ,

 2tanO = \frac{6}{√3}

  tanO = \frac{3}{√3}

  <strong>tanO = √3</strong>

(O = 60°)

Similar questions