if tan 2A = cot ( A- 18 ) , where 2A is an acute angle , find the value of A ??
Sakshi15403:
A = 36°
Answers
Answered by
12
hey... MATE here's ur solution,
given,.
tan 2A = cot ( A - 18 )
cot ( 90 - 2A) = cot ( A -18 )
( since tan (90- Q = cot Q) )
90 - 2A = A - 18
- 2A - A. = -18 -90
hence A = 36
HOPE IT MIGHT BE HELPFUL !!
given,.
tan 2A = cot ( A - 18 )
cot ( 90 - 2A) = cot ( A -18 )
( since tan (90- Q = cot Q) )
90 - 2A = A - 18
- 2A - A. = -18 -90
hence A = 36
HOPE IT MIGHT BE HELPFUL !!
Answered by
0
Solution:
It is given that tan2A=cot(A−18°)
⇒tan2A=cot(90° −(108° −A))
⇒tan2A=tan(108° −A)
{°•° cot(90° −A)=tan(A)}
⇒2A=108° −A
⇒3A=108°
⇒A=108°/3 =36°
Thanks ☺
Similar questions