If tan 2A=cot(A-18), where 2A is an acute angle, find the value of A.
mohdmussa:
Plz ans
Answers
Answered by
30
Solution: tan2A=cot(A-18
or, cot(90-2A)=cot(A-18). {since tan A=cot(90-A)}
or, 90-2A=A-18
or,. 90+18=A+2A
or,. 108=3A
or,. A=108/3
or,. A= 36° answer
or, cot(90-2A)=cot(A-18). {since tan A=cot(90-A)}
or, 90-2A=A-18
or,. 90+18=A+2A
or,. 108=3A
or,. A=108/3
or,. A= 36° answer
Answered by
8
Solution:
It is given that tan2A=cot(A−18°)
⇒tan2A=cot(90° −(108° −A))
⇒tan2A=tan(108° −A)
{°•° cot(90° −A)=tan(A)}
⇒2A=108° −A
⇒3A=108°
⇒A=108°/3 =36°
Thanks ☺
Similar questions
Geography,
7 months ago
Math,
7 months ago
Math,
7 months ago
Computer Science,
1 year ago
Science,
1 year ago