If tan 35° = k then find the value of
(tan 145° - tan 125°)/(1+tan145°.tan125°)
Answers
If 3x=cosecθ and 3/x=cotθ, then find the value of 3(x²-1/x²) PLEASE HELP BEST ANSWER WILL BE MARKED BRAINLIEST
https://brainly.in/question/21134289
If sinθ+cosθ=x prove that sin6θ+cos6θ=4-3(x²-1)²/4
https://brainly.in/question/15923140
Answer:
an35
∘
=k
\textbf{To find:}To find:
\textsf{The value of}\;\mathsf{\dfrac{tan145^\circ-tan125^\circ}{1+tan145^\circ\;tan125^\circ}}The value of
1+tan145
∘
tan125
∘
tan145
∘
−tan125
∘
\textbf{Solution:}Solution:
\mathsf{Consider,}Consider,
\mathsf{\dfrac{tan145^\circ-tan125^\circ}{1+tan145^\circ\;tan125^\circ}}
1+tan145
∘
tan125
∘
tan145
∘
−tan125
∘
\mathsf{=\dfrac{tan(180^\circ-35^\circ)-tan(90^\circ+35^\circ)}{1+tan(180^\circ-35^\circ)\;tan(90^\circ+35^\circ)}}=
1+tan(180
∘
−35
∘
)tan(90
∘
+35
∘
)
tan(180
∘
−35
∘
)−tan(90
∘
+35
∘
)
\mathsf{=\dfrac{-tan35^\circ+cot35^\circ}{1+tan35^\circ\;cot35^\circ}}=
1+tan35
∘
cot35
∘
−tan35
∘
+cot35
∘
\mathsf{=\dfrac{-tan35^\circ+\dfrac{1}{tan35^\circ}}{1+tan35^\circ(\dfrac{1}{tan35^\circ})}}=
1+tan35
∘
(
tan35
∘
1
)
−tan35
∘
+
tan35
∘
1
\mathsf{=\dfrac{-k+\dfrac{1}{k}}{1+1}}=
1+1
−k+
k
1
\mathsf{=\dfrac{\dfrac{1-k^2}{k}}{2}}=
2
k
1−k
2
\mathsf{=\dfrac{1-k^2}{2k}}=
2k
1−k
2
\implies\boxed{\mathsf{\dfrac{tan145^\circ-tan125^\circ}{1+tan145^\circ\;tan125^\circ}=\dfrac{1-k^2}{2k}}}⟹
1+tan145
∘
tan125
∘
tan145
∘
−tan125
∘
=
2k
1−k
2