If tan 3x = sin45° cos 45 ° + sin 30° , find the value of x
Answers
Answered by
0
Answer: mark branliest
Step-by-step explanation:
tan3x=sin45∘cos45∘+sin30∘
⟹tan3x=12–√⋅12–√+12
⟹tan3x=12+12
⟹tan3x=1=tanπ4
⟹3x=nπ+π4,n∈Z
∵ The general solution of tanx=tany is x=nπ+y,n∈Z
⟹x=nπ3+π12,n∈Z
Answered by
3
Answer: 15º
Step-by-step explanation:
Given: tan 3x = sin 45º cos 45º + sin 30°.
To find: Value of x
Previous Knowledge:
Very important basic trigonometry values
Solution:
⇒ tan 3x = × +
⇒ tan 3x = +
⇒ tan 3x = 1 [Since tan 45º = 1 ]
⇒ 3x = 45º
⇒ x = = 15º
Thanks!
Similar questions