Math, asked by kgnanasai, 1 month ago

If tanθ=78 , then the value of (1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ)=​

Answers

Answered by mad210201
0

Given:

tan\theta=\dfrac{7}{8}

To Find:

The value of (1+sin\theta)(1-sin\theta)(1+cos\theta)(1-cos\theta)

Step-by-step explanation:

  • The formula of tan\theta is

tan\theta=\dfrac{opposite\ side}{adjacent\ side}

  • Use Pythagoras theorem,

(Hypotenuse)^{2}=(Opposite\ side)^{2}+(Adjacent\ side)^{2} \\(Hypotenuse)^{2}=7^{2}+8^{2}\\(Hypotenuse)^{2}=113\\Hypotenuse=\sqrt{113}

sin\theta=\dfrac{opposite\ side}{hypotenuse}=\dfrac{7}{\sqrt{113} }

cos\theta=\dfrac{Adjacent\ side}{hypotenuse} =\dfrac{8}{\sqrt{113} }

  • The value of

=(1+sin\theta)(1-sin\theta)(1+cos\theta)(1-cos\theta)\\=(1-sin^{2} \theta)(1-cos^{2}\theta)

=(1-(\frac{7}{\sqrt{113}  })^{2})(1-(\frac{8}{\sqrt{113} })^{2})\\=(1-\frac{49}{113})(1-\frac{64}{113})\\=(\frac{64}{113})(\frac{49}{113})\\=\dfrac{3136}{12769} .

Similar questions