If tanθ =8/15, then evaluate (1+sinθ)(2-2sinθ)/(2+2cosθ)(1-cosθ)
Answers
Answered by
1
tanθ = 8/15
(1 + sinθ)(2 - 2sinθ)/(2 + 2cosθ)(1 - cosθ)
= {(1 + sinθ)2(1 - sinθ)}/{2(1 + cosθ)(1 - cosθ)}
= (1 + sinθ)/(1 - sinθ)/(1 + cosθ)(1 - cosθ)
= (1 - sin²θ )/(1 - cos²θ) [ from, (a -b)(a + b) = a² -b²]
= cos²θ/sin²θ [ from sin²θ + cos²θ = 1 ]
= 1/{sin²θ/cos²θ}
= 1/tan²θ
put , tanθ = 8/15
= 1/{8/15}²
= 15²/8²
= 225/64 [ans]
(1 + sinθ)(2 - 2sinθ)/(2 + 2cosθ)(1 - cosθ)
= {(1 + sinθ)2(1 - sinθ)}/{2(1 + cosθ)(1 - cosθ)}
= (1 + sinθ)/(1 - sinθ)/(1 + cosθ)(1 - cosθ)
= (1 - sin²θ )/(1 - cos²θ) [ from, (a -b)(a + b) = a² -b²]
= cos²θ/sin²θ [ from sin²θ + cos²θ = 1 ]
= 1/{sin²θ/cos²θ}
= 1/tan²θ
put , tanθ = 8/15
= 1/{8/15}²
= 15²/8²
= 225/64 [ans]
Answered by
1
Hi ,
Here I am using ' A ' instead of theta.
tanA = 8/15 ----( 1 )
i ) ( 1 + sinA )( 2 - 2SinA )
= 2( 1 + sinA )( 1 - sinA )
= 2( 1² - sin²A )
= 2cos²A ---( 2 )
ii ) ( 2 + 2 cosA )( 1 - cosA )
= 2( 1 + cosA )( 1 - cosA )
= 2 ( 1² - cos² A )
= 2sin²A ---( 3 )
Now ,
[(1+sinA)(2-2sinA)]/[(2+2cosA)(1-cosA)]
= [2cos²A ]/[ 2sin²A] from ( 2) and ( 3 ),
= cos²A/sin²A
= cot²A
= 1/tan²A
= 1/(8/15)²
= 15²/8²
= 225/64
I hope this helps you.
: )
Here I am using ' A ' instead of theta.
tanA = 8/15 ----( 1 )
i ) ( 1 + sinA )( 2 - 2SinA )
= 2( 1 + sinA )( 1 - sinA )
= 2( 1² - sin²A )
= 2cos²A ---( 2 )
ii ) ( 2 + 2 cosA )( 1 - cosA )
= 2( 1 + cosA )( 1 - cosA )
= 2 ( 1² - cos² A )
= 2sin²A ---( 3 )
Now ,
[(1+sinA)(2-2sinA)]/[(2+2cosA)(1-cosA)]
= [2cos²A ]/[ 2sin²A] from ( 2) and ( 3 ),
= cos²A/sin²A
= cot²A
= 1/tan²A
= 1/(8/15)²
= 15²/8²
= 225/64
I hope this helps you.
: )
Similar questions