Math, asked by himanshugupta001, 1 month ago

if tan A=1/2,sin B=1/3, Find the value of sin (A+B) and Sin(2A+2B)​

Answers

Answered by darshanradha3
4

Answer:

                   Sin(A+B) = \frac{2\sqrt{2}+2}{3\sqrt{5} }

Step-by-step explanation:

  Given:

                 

                   tan A = \frac{1}{2} , sin B = \frac{1}{3}

By Formula :

                   

                              Sin(A+B) = sinA × cosB + cosA × sinB --------->Equation 1

                              Sin(2A+2B) = sin2A × cos2B + cos2A × sin2B

           tan A = \frac{1}{2} = \frac{opposite}{base}

          There fore right angle triangles opposite side is 1 and base is 2

   Hence by pythogorous theorem we get:

       (Hypotenuse)² = (opposite side)² + (base)²

 

                                  = 1² + 2²

                                 = 5

            Hypotenuse = √5

      Therefore:

                           

                          Hypotenuse = √5 , Opposite = 1 , Base = 2

                        sinA = \frac{opposite}{hypotenuse} = \frac{1}{\sqrt{5} } ------------> equation 2

                       cosA = \frac{base}{hypotenuse} = \frac{2}{\sqrt{5} } ------------> equation 3

Given:

                sin B = \frac{1}{3} = \frac{opposite}{hypotenuse} ---------------->equation 4

    There fore right angle triangles opposite side is 1 and hypotenuse is 3

    Hence by pythogorous theorem we get:

       (Hypotenuse)² = (opposite side)² + (base)²

                          3² = 1² + (base)²

                     9 - 1 = (base)²

                  (base)² = 8

                    base = √8 = 2√2

Therefore:

                           

                          Hypotenuse = 3 , Opposite = 1 , Base = 2√2

                    cosB = \frac{base}{hypotenuse} = \frac{2\sqrt{2} }{3} } -----------------> equation 5

    Now substitute equation 2 3 4 5 in equation 1 that is:

              Sin(A+B) = sinA × cosB + cosA × sinB

                             = \frac{1}{\sqrt{5} } × \frac{2\sqrt{2} }{3} } + \frac{2}{\sqrt{5} } × \frac{1}{3}

                             = \frac{2\sqrt{2} }{3\sqrt{5} } + \frac{2}{3\sqrt{5} }

             Sin(A+B) = \frac{2\sqrt{2}+2}{3\sqrt{5} }

                                                HOPE U UNDERSTOOD

                                                          THANK YOU :)

Similar questions