Math, asked by maheeanshu91581, 10 months ago

If tan a=1 and tan b =√3 then cos a.cos b-sina.sinb

Answers

Answered by Anonymous
12

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

If tan a=1 and tan b =√3 ,then ( cos a . cos b - sin a . sin b ) .

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\blue{\bf{Given}}}}}

  • tan a=1
  • tan b =√3 .

\Large{\underline{\mathfrak{\blue{\bf{Find}}}}}

  • ( cos a . cos b - sin a . sin b )

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

we know,

\Large{\underline{\mathfrak{\blue{\bf{In\:\triangle\:ABC}}}}}

\small\boxed{\sf{\pink{\:\tan a\:=\:\dfrac{Perpendiculer}{Base}\:=\:\dfrac{AB}{BC}\:=\:\dfrac{1}{1}}}}

\Large{\underline{\mathfrak{\blue{\bf{By\:Pythagoras\:Theorem}}}}}

\small\boxed{\sf{\pink{\:(Hypotenuse)^2\:=\:(perpendiculer)^2+(Base)^2}}} \\ \\ \mapsto\sf{\:(Hypotenuse)^2\:=\:(1)^2+(1)^2} \\ \\ \mapsto\sf{\:(Hypotenuse)\:=\:\sqrt{2}}

Now,

\small\boxed{\sf{\pink{\:\cos a\:=\:\dfrac{Base}{Hypotenuse}\:=\:\dfrac{1}{\sqrt{2}}}}}

And,

\small\boxed{\sf{\pink{\:\sin a\:=\:\:\dfrac{perpendicular}{Hypotenuse}\:=\:\dfrac{1}{\sqrt{2}}}}}

Again,

\large{\underline{\mathfrak{\blue{\bf{In\:\triangle\:PQR}}}}}

\small\boxed{\sf{\pink{\:\tan b\:=\:\dfrac{perpendicular}{Base}\:=\:\dfrac{\sqrt{3}}{1}}}}

\large{\underline{\mathfrak{\blue{\bf{By\:Pythagoras\:Theorem}}}}}

\small\boxed{\sf{\pink{\:(Hypotenuse)^2\:=\:(perpendicdzqquler)^2+(Base)^2}}} \\ \\ \mapsto\sf{\:(Hypotenuse)^2\:=\:(\sqrt{3})^2+(1)^2} \\ \\ \mapsto\sf{\:(Hypotenuse)\:=\:\sqrt{4}} \\ \\ \mapsto\sf{\:(Hypotenuse)\:=\:2}

Now,

\small\boxed{\sf{\pink{\:\cos b\:=\:\dfrac{Base}{Hypotenuse}\:=\:\dfrac{1}{2}}}}

and,

\small\boxed{\sf{\pink{\:\sin b=\:\dfrac{perpendicular}{Hypotenuse}\:=\:\dfrac{\sqrt{3}}{2}}}}

Now,Calculate

\mapsto\sf{\orange{\:(\cos a . \cos b - \sin a . \sin b)}}

( Keep value of cos a , cos b , sin a and sin b )

\mapsto\sf{\:\dfrac{1}{\sqrt{2}}.\dfrac{1}{2}\:-\:\dfrac{1}{\sqrt{2}}.\dfrac{\sqrt{3}}{2}} \\ \\ \mapsto\sf{\:\dfrac{1}{4}\:-\:\dfrac{\sqrt{3}}{2\sqrt{2}}} \\ \\ \mapsto\sf{\:\dfrac{1}{4}\:-\:\dfrac{\sqrt{6}}{4}} \\ \\ \mapsto\sf{\blue{\:\dfrac{(1-\sqrt{6})}{4}\:\:\:\:\:\:\:Ans}}

Attachments:
Answered by Anonymous
1

\huge \tt \it \bf \it \bm { \mathbb{ \fcolorbox{blue}{yellow}{  \red{ANSWER :}}}}   \green\longrightarrow</p><p>

 \large { \boxed {\fbox{\frac{1 -  \sqrt{6} }{4}}}} \\

solution was in the attachment.

Attachments:
Similar questions