Math, asked by itsshantanu05, 9 months ago

if tan A = 1/ root 3 and tan b = root 3 prove that sin A cos B + cos A sin B = 1​

Answers

Answered by dilliprasaddhakal528
0

lhs \:  = sina.cosb + cosasinb \\  =   \frac{sina.cosb + cosasinb}{cosa.cosb}  \\  = tana + tanb \\  =  \frac{1}{ \sqrt{3} }  +  \sqrt{3}  \\  =  \frac{1 + 3}{ \sqrt{3} }  \\  =  \frac{4}{ \sqrt{3} }

Answered by ajay8949
1

 \tan \: a =  \frac{1}{ \sqrt{3} }

 \tan \: b  =  \sqrt{3}

It is given that tan A = 1/√3

\fcolorbox{red}{yellow}{tan30°\:=\:1/√3}

on comparing we get,

\bold\blue{A\:=\:30°}

and tan B = √3

\fcolorbox{red}{yellow}{tan60°\:=\:√3}

\bold\blue{B\:=\:60°}

now,

= sin A cos B + cos A sin B

= sin 30° × cos 60° + cos 30° × sin 60°

=  \frac{1}{2}  \times  \frac{1}{2}  \: +    \: \frac{ \sqrt{3} }{2}  \times  \frac{ \sqrt{3} }{2}

=  \frac{1}{4}  +  \frac{3}{4}

=  \frac{1 + 3}{4}

=  \frac{4}{4}

= 1

\mathfrak\purple{please\:mark\:as\:brainliest.}

Similar questions