Math, asked by fatima028, 5 months ago

If tan a= 1 /root 3and sin b 1/root 2
find a+b​

Answers

Answered by DILhunterBOYayus
18

\sf{\bold{\blue{\underline{\underline{Given}}}}}

tanA=\frac{1}{\sqrt{3}} 

sinB=\frac{1}{\sqrt{2}} 

\sf{\bold{\red{\underline{\underline{To\:Find}}}}}

(A+B)=??? ⠀⠀⠀⠀

\sf{\bold{\purple{\underline{\underline{Solution}}}}}

tanA=\frac{1}{\sqrt{3}} 

tanA=tan30°  ⠀⠀⠀

\boxed{\pink{A=30°}} 

Then,

sinB=\frac{1}{\sqrt{2}} 

sinB=sin45° 

\boxed{\pink{B=45°}} 

So.......

A+B=30°+45°

A+B=75°

\sf{\bold{\green{\underline{\underline{Answer}}}}}

♥️{\underline{\underbrace{\mathcal\color{gold}{(A+B)=75°}}}}

⠀⠀⠀⠀

Answered by Anonymous
3

Given:

◈tan \: a =  \frac{1}{ \sqrt{3} }  \\  \\ ◈sin \: b =  \frac{1}{ \sqrt{2} }

To find:

a+b

Solution:

 \sf \large Tan \: a =  \frac{1}{ \sqrt{3} }  \\  \\

 \sf \large As \: we \: know \:  that \: tan \: 30 \degree =  \frac{1}{ \sqrt{3} }  \\

So a is 30°

 \sf \large Sin \: b =  \frac{1}{ \sqrt{2} }  \\

 \sf \large As \: we \: know \: that \: sin \: 45 \degree =  \frac{1}{ \sqrt{2} }

So b is 45°

(a+b)

30°+45°

75°

Similar questions