if tan A =15/8 and tan B =7/24, then cos a-b=
Answers
Answer:
Step-by-step explanation:
sin(A-B)=sinAcosB-cosAsinB
if tanA=15/8 then sinA=15/17,cosA=8/17
if tanB=7/24 then sinB=7/25
sin(A-B)=(15/17)(24/25)-(8/17)(7/25)=304/425
then cos (A-B)=1/sin(A-B)=425/304
Answer:
\frac{425}{304}
sin(A-B)=sinAcosB-cosAsinB
if tanA=15/8 then sinA=15/17,cosA=8/17
if tanB=7/24 then sinB=7/25
sin(A-B)=(15/17)(24/25)-(8/17)(7/25)=304/425
then cosec(A-B)=1/sin(A-B)=425/304
Step-by-step explanation:
Given,
\tan A=\frac{15}{8}
\because \tan A =\frac{\text{opposite leg}}{\text{Adjacent leg}}
Now,
\sin A = \frac{\text{opposite leg}}{\tex{Hypotenuse}}
=\frac{15}{\sqrt{15^2+8^2}}
=\frac{15}{\sqrt{225+64}}
=\frac{15}{\sqrt{289}}
=\frac{15}{17}
\cos A = \frac{\text{adjacent leg}}{\text{hypotenuse}}=\frac{8}{17}
Similarly,
\tan B=\frac{7}{24}
\implies\sin B=\frac{7}{\sqrt{7^2+24^2}}
=\frac{7}{\sqrt{49+576}}
=\frac{7}{\sqrt{625}}
=\frac{7}{25}
\cos B=\frac{24}{25}
cosec (A-B)=\frac{1}{sin (A-B)}=\frac{1}{sin A cos B - sin B cos A}
=\frac{1}{\frac{15}{17}\times \frac{24}{25}-\frac{7}{25}\times \frac{8}{17}}
=\frac{17\times 25}{360-56}
=\frac{425}/{304}