If tan A=1root 3 and tan B=root 3 then find sin A Cos B (A, B<90)
Answers
Answer- The above question is from the chapter 'Introduction to Trigonometry'.
Trigonometry- The branch of Mathematics which helps in dealing with measure of three sides of a right-angled triangle is called Trigonometry.
Trigonometric Ratios:
sin θ = Perpendicular/Hypotenuse
cos θ = Base/Hypotenuse
tan θ = Perpendicular/Base
cosec θ = Hypotenuse/Perpendicular
sec θ = Hypotenuse/Base
cot θ = Base/Perpendicular
Also, tan θ = sin θ/cos θ and cot θ = cos θ/sinθ
Trigonometric Identites:
1. sin²θ + cos²θ = 1
2. sec²θ - tan²θ = 1
3. cosec²θ - cot²θ = 1
Trigonometric Values of Angles from 0° to 90°:
(The table has been attached.)
Given question: If tan A = 1/√3 and tan B = √3, then find sin A cos B where (A < 90° > B).
Solution: tan A = 1/√3
tan A = tan 30°
⇒ A = 30°
tan B = √3
tan B = tan 60°
⇒ B = 60°
sin A cos B = sin 30° × cos 60°
= 1/2 × √3/2
= √3/4