Math, asked by BrainlyRaaz, 8 months ago

If tan A = 3/4, then show that sin A. cos A = 12/25.

Sahi Solution hona chahiye bss kahi se chep ke do​

Answers

Answered by Anonymous
40

Answer:

here \: is \: your \: answer \: dear

Attachments:
Answered by TheProphet
8

S O L U T I O N :

\underline{\bf{Given\::}}

tan A = 3/4

\underline{\bf{Explanation\::}}

Firstly, attachment a figure of right angled Δ according to the given question.

As we know that,

\boxed{\bf{tan\:\theta = \frac{Perpendicular}{Base} }}

A/q

\mapsto\tt{tan\:A = \dfrac{3}{4}  = \dfrac{AC}{AB} }

\underline{\underline{\tt{Using\:\:by\:\:Pythagoras\:\:theorem\::}}}

\mapsto\sf{(Hypotenuse)^{2} = (Base)^{2} + (Perpendicular)^{2}}

\mapsto\sf{(BC)^{2} = (AB)^{2} + (AC)^{2}}

\mapsto\sf{(BC)^{2} = (4)^{2} + (3)^{2}}

\mapsto\sf{(BC)^{2} = 16 + 9}

\mapsto\sf{(BC)^{2} =25}

\mapsto\sf{BC =\sqrt{25} }

\mapsto\bf{BC =5\:unit}

Now,

Taking L.H.S :

\mapsto\tt{sin\:A \times cos \:A}

\mapsto\tt{\dfrac{Perpendicular}{Hypotenuse}  \times \dfrac{Base}{Hypotenuse} }

\mapsto\tt{\dfrac{AC}{BC} \times \dfrac{AB}{BC} }

\mapsto\tt{\dfrac{3}{5} \times \dfrac{4}{5} }

\mapsto\bf{\dfrac{12}{25} }

Thus,

L.H.S = R.H.S

Attachments:
Similar questions