Math, asked by sunitikhandelwal321, 8 months ago

if tan A 4/3 find the value of 2 sin A -3 cos A /2 sin A +3 cos A

Answers

Answered by Anonymous
5

Solution:-

Given

 \rm \tan A  =  \dfrac{4}{3}  =  \dfrac{p}{b}

 \rm \: p = 4,b = 3 \: and \: h = x

Using phythogoeros theorem

 \rm \:  {h}^{2}  =  {p}^{2}  +  {b}^{2}

 \rm \:  {x}^{2}  =  {4}^{2}  +  {3}^{2}

 \rm \: x {}^{2}  = 16 + 9

 \rm \: x = 5 = h

So

\rm \: p = 4,b = 3 \: and \: h = 5

Now

 \rm \sin  A  =  \dfrac{p}{h}  =  \dfrac{4}{5}

 \rm \:  \cos A =  \dfrac{b}{h}  =  \dfrac{3}{5}

put the value on given equation

 \rm \dfrac{2 \sin A - 3 \cos A}{2 \sin A  +  3 \cos A}

 \rm \:  \dfrac{2 \times  \dfrac{4}{5} - 3 \times  \dfrac{3}{5}  }{2 \times  \dfrac{4}{5}  + 3 \times  \dfrac{3}{5}  }

 \rm \:  \dfrac{ \dfrac{8}{5}  -  \dfrac{9}{5} }{\dfrac{8}{5}   +   \dfrac{9}{5} }

 \rm \:  \dfrac{ - 1}{5}  \times  \dfrac{5}{17}

Answer is

 \to \rm \:  \dfrac{ - 1}{17}

Answered by darkcell578
1

Answer:-1/7

See the picture I have added to this for complete Explaination

Attachments:
Similar questions