Math, asked by devengg52, 9 months ago

If tan A = 4/3 then (sin A + cos A) = ?​

Answers

Answered by ramandhamija
1

Step-by-step explanation:

tanA= perpendicular/ base = 4/3

so we can find the hypotenuse by using Pythagoras theorem

hyp²= base²+ perp²

= 4²+3²

hyp²= 16+9

hyp=√25= 5

we know that sinA= Perp/hyp = 4/5

and cosA = base / hyp= 3/5

so sinA+ cosA= 4/5+3/5= 7/5

Answered by UNseenBUTTERfly
0

Step-by-step explanation:

Given

tan  \: a \:  =  \frac{4}{3}  \\  \\ (sin \: a \:    + cos \: a) =

\red{We \: know \: that} ,

tan \: a  =  \frac{(opposite)}{(adjacent)} \\  \\ where \\  \\ opposite \:  \: side \:  =  4  \\ adjacent \:  \: side \:  = 3

\red{By~Pythagoras~Theorem} :-

 => {(opposite)}^{2}  +  {(adjaent)}^{2}  =  {(hypotenuse)}^{2}  \\  \\  {(4)}^{2}  +  {(3)}^{2}  =  {(hypotenuse)}^{2}  \\  \\ 16 + 9 =  {(hypotenus)}^{2}  \\  \\ 25 =  {(hypotenuse)}^{2}  \\  \\ hypotenuse =  \sqrt{25}  \\  \\  hypotenus \:  =  5

:.

</em></strong><strong><em>\</em></strong><strong><em>b</em></strong><strong><em>l</em></strong><strong><em>u</em></strong><strong><em>e</em></strong><strong><em>{</em></strong><strong><em>S</em></strong><strong><em>in \: </em></strong><strong><em>A</em></strong><strong><em> </em></strong><strong><em>}</em></strong><strong><em> =  \frac{(opposite \: side)}{(hypotenuse)}   \\ </em></strong><strong><em>→</em></strong><strong><em> </em></strong><strong><em>\</em></strong><strong><em>b</em></strong><strong><em>l</em></strong><strong><em>u</em></strong><strong><em>e</em></strong><strong><em>{</em></strong><strong><em>Si</em></strong><strong><em>n \: </em></strong><strong><em>A</em></strong><strong><em> </em></strong><strong><em>}</em></strong><strong><em> =  \frac{4}{5}  </em></strong><strong><em>\</em></strong><strong><em>\</em></strong><strong><em> </em></strong><strong><em>\\ and \\</em></strong><strong><em> </em></strong><strong><em>\</em></strong><strong><em>\</em></strong><strong><em> </em></strong><strong><em>\</em></strong><strong><em>p</em></strong><strong><em>i</em></strong><strong><em>n</em></strong><strong><em>k</em></strong><strong><em>{</em></strong><strong><em>C</em></strong><strong><em>os \: </em></strong><strong><em>A</em></strong><strong><em> </em></strong><strong><em>}</em></strong><strong><em>=  \frac{(adjacent)}{(hypotenuse)}  \\ </em></strong><strong><em>→</em></strong><strong><em> </em></strong><strong><em>\</em></strong><strong><em>p</em></strong><strong><em>i</em></strong><strong><em>n</em></strong><strong><em>k</em></strong><strong><em>{</em></strong><strong><em>Cos</em></strong><strong><em> \: </em></strong><strong><em>A</em></strong><strong><em>}</em></strong><strong><em> =  \frac{3}{5}

:. ( Sin A + Cos A ) =

 =&gt; \frac{4}{5}  =  \frac{3}{5}  \\  \\  =&gt; \frac{(4 + 3)}{5}  \\  \\ \green{===&gt;} \frac{7}{5}

Similar questions