Math, asked by ahbasit32, 9 months ago

If tan A=44, then Cos A is:​

Answers

Answered by BrainlyPopularman
4

GIVEN :

tan(A) = 44

TO FIND :

cos(A) = ?

SOLUTION :

 \\ \implies { \bold{ \tan(A) = 44 }} \\

• We know that –

 \\ \dashrightarrow { \bold{ \tan(A) =  \dfrac{ \sin(A) }{ \cos(A) }  }} \\

• So that –

 \\ \implies { \bold{ \dfrac{ \sin(A) }{ \cos(A) } = 44}} \\

• We also know that –

 \\ \dashrightarrow { \bold{ { \sin }^{2} \theta  \: + \:  { \cos}^{2} \theta = 1  }} \\

 \\ \dashrightarrow { \bold{{ \sin}^{2} \theta = 1 - { \cos}^{2} \theta}} \\

• So that –

 \\ \implies { \bold{ \dfrac{  \sqrt{1 - { \cos}^{2}(A) }}{ \cos(A) } = 44}} \\

• Square on both sides –

 \\ \implies { \bold{ \dfrac{{1 - { \cos}^{2}(A) }}{ \cos^{2} (A) } =1936 }} \\

 \\ \implies { \bold{ \dfrac{1}{ \cos^{2} (A) } -  \dfrac{{ \cos}^{2}(A) }{{ \cos}^{2}(A)}  = 1936}} \\

 \\ \implies { \bold{ \dfrac{1}{ \cos^{2} (A) } -1= 44}} \\

 \\ \implies { \bold{ \dfrac{1}{ \cos^{2} (A) } = 1936 + 1}} \\

 \\ \implies { \bold{ \dfrac{1}{ \cos^{2} (A) } = 1937}} \\

 \\ \implies { \bold{\cos^{2} (A)  = \dfrac{1}{1937}}} \\

• Take square root –

 \\ \longrightarrow \: { \boxed { \bold{\cos (A)  = \pm \sqrt{ \dfrac{1}{1937}}}}} \\

Answered by MaIeficent
22

Step-by-step explanation:

{\red{\underline{\underline{\bold{Given:-}}}}}

  • Tan A = 44

{\blue{\underline{\underline{\bold{To\:Find:-}}}}}

  • The value of Cos A

{\green{\underline{\underline{\bold{Solution:-}}}}}

Tan A = 44

As we know

Tan A =  \frac{Sin A }{Cos A}  \\ .......(1)

As, per the Trigonometric identity

{sin}^{2}  A +  {cos}^{2} A = 1 \\  \\  \implies {sin}^{2} A = 1 -  {cos}^{2} A \\  \\  \implies sin A =  \sqrt{1 -  {cos}^{2} A }

Therefore:-

Substitute the value of Sin A in equation (1)

 \frac{ \sqrt{1 -  {Cos}^{2}A } }{Cos A}   = Tan A \\

S.O.B.S [ Squaring on both sides]

\frac{ ({ \sqrt{1 -  {cos}^{2} A}) }^{2} }{ {cos}^{2} A}  = {44}^{2}  \\  \\  \implies \frac{ 1 -  {cos}^{2}  A}{ {cos}^{2} A}  = 1936 \\  \\  \implies  \frac{1}{  {cos}^{2} A }  -  \frac{ {cos}^{2} A}{ {cos}^{2}A }  = 1936 \\  \\  \implies  \frac{1}{ {cos}^{2} A}  - 1 = 1936 \\  \\  \implies  \frac{1}{ {cos}^{2}A }  = 1936 + 1 \\  \\  \implies  \frac{1}{ {cos}^{2} A}  = 1937 \\  \\ \implies  {cos}^{2} A =  \frac{1}{1937}

\boxed{Cos A =  \pm \sqrt{ \frac{1}{1937} } }

Similar questions