if tan A = a/b then what the value of bsinA - acosA/bsinA+acosA
Answers
Answered by
4
हल-
![tanA \: = \frac{a}{b} tanA \: = \frac{a}{b}](https://tex.z-dn.net/?f=+++tanA+%5C%3A++%3D++%5Cfrac%7Ba%7D%7Bb%7D+)
![\frac{b \: sinA \: - a \: cosA }{b \: sinA \: + a \: cosA } \\ \\ = \frac{cosA \: (b \: tanA \: - a)}{cosA \: (b \: tanA \: + a)} \\ \\ = \frac{b \times \frac{a}{b} - a }{b \times \frac{a}{b} + a} \\ \\ = \frac{a - a}{a + a} \\ \\ = \frac{0}{2a} \\ \\ = 0 \frac{b \: sinA \: - a \: cosA }{b \: sinA \: + a \: cosA } \\ \\ = \frac{cosA \: (b \: tanA \: - a)}{cosA \: (b \: tanA \: + a)} \\ \\ = \frac{b \times \frac{a}{b} - a }{b \times \frac{a}{b} + a} \\ \\ = \frac{a - a}{a + a} \\ \\ = \frac{0}{2a} \\ \\ = 0](https://tex.z-dn.net/?f=++++%5Cfrac%7Bb+%5C%3A+sinA+%5C%3A++-+a+%5C%3A+cosA+%7D%7Bb+%5C%3A+sinA+%5C%3A++%2B+a+%5C%3A+cosA+%7D+++%5C%5C++%5C%5C++%3D++%5Cfrac%7BcosA+%5C%3A+%28b+%5C%3A+tanA+%5C%3A++-+a%29%7D%7BcosA+%5C%3A+%28b+%5C%3A+tanA+%5C%3A++%2B+a%29%7D++%5C%5C++%5C%5C++%3D++%5Cfrac%7Bb+%5Ctimes++%5Cfrac%7Ba%7D%7Bb%7D+-+a+%7D%7Bb+%5Ctimes++%5Cfrac%7Ba%7D%7Bb%7D++%2B+a%7D++%5C%5C++%5C%5C++%3D++%5Cfrac%7Ba+-+a%7D%7Ba+%2B+a%7D++%5C%5C++%5C%5C++%3D++%5Cfrac%7B0%7D%7B2a%7D++%5C%5C++%5C%5C++%3D+0)
Answer = 0
Answer = 0
Answered by
0
Step-by-step explanation:
tanA =a/b -----1)
from question .
cosA+ sinA/cosA -sinA
1 + tanA / 1 - tanA { dividing by cosA }
=] 1+ a/b
------------- [ From 1 ]
1 -a/b
=> a +b /b
---------------
a- b/b
=] ✓a+b /a-b Answer ...
Similar questions