Math, asked by khushiacharjee547, 1 month ago

If tan(A+B) =√3 and tan (A-B) =1/√3 0degree <(A+B) i. e 90 degree A>B then find the value of A and B​

Answers

Answered by kishan182005
0

Step-by-step explanation:

tan 60=√3

hence a+b=60. (1)

now tan 30=1/√3

hence a-b=30 (2)

solving 1 and 2 we get

2a=30

hence a=15°

now substuiting a=15° in (1) we get b=45°

hence value of a and b are 15° and 45° respectivley

Answered by Sauron
4

Answer:

Value of A is 45 and B is 15.

Step-by-step explanation:

\sf{\tan(A+B) =  \sqrt{3} }

\sf{ \tan(A - B) =  \dfrac{1}{ \sqrt{3} } }

\begin{array}{ |c |c|c|c|c|c|} \sf\angle A &amp; \sf{0}^{ \circ} &amp; \sf{30}^{ \circ} &amp; \sf{45}^{ \circ} &amp; \sf{60}^{ \circ} &amp; \sf{90}^{ \circ} \\ \\ \sf \: tan \: A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp; 1 &amp; \sqrt{3} &amp; \sf Not \: de fined \\  \:  \end{array} \\

\longrightarrow\sf{ \tan(A+B)  =  \sqrt{3}}

We know that : \sf{\tan( {60}^{\circ})  =  \sqrt{3}}

\longrightarrow\sf{ A+B= 60}

\longrightarrow\sf{ A = 60 - B} \:  -  - (i)

\longrightarrow\sf{ \tan(A - B)  =   \dfrac{1}{\sqrt{3}}}

We know that : \sf{\tan( {30}^{\circ})  =   \dfrac{1}{ \sqrt{3}}}

\longrightarrow\sf{ A - B =   {30}^{\circ}}

Substitute eq. i

\longrightarrow\sf{ (60 - B) - B =   {30}^{\circ}}

\longrightarrow\sf{ - 2B =   {30 - 60}}

\longrightarrow\sf{ - 2B =   { - 15}}

\longrightarrow\sf{ B =   { \dfrac{30}{2} }}

\longrightarrow\sf{ B =   {15}}

Value of A,

Put value of B in eq. i

\longrightarrow\sf{ A  = 60 - 15}

\longrightarrow\sf{ A  = 45}

Therefore, value of A is 45 and B is 15.

Similar questions