If tan (A+B) = √3 and tan (A-B ) = 1/√3 . Find A and B.
Don't spam✖️✖️
Answers
EXPLANATION.
⇒ tan(A + B) = √3. - - - - - (1).
⇒ tan(A - B) = 1/√3. - - - - - (2).
As we know that,
We can write equation as, we get.
⇒ tan(A + B) = tan(60°). - - - - - (1).
⇒ tan(A - B) = tan(30°). - - - - - (2).
⇒ A + B = 60°. - - - - - (1).
⇒ A - B = 30°. - - - - - (2).
We get,
⇒ 2A = 90°.
⇒ A = 45°.
Put the value of A = 45° in equation (1), we get.
⇒ 45° + B = 60°.
⇒ B = 60° - 45°.
⇒ B = 15°.
Value of A = 45° & B = 15°.
Given that:
- Tan (A+B) = √3
- Tan (A-B) = 1/√3
To find:
- The value of A
- The value of B
Solution:
- The value of A = 45°
- The value of B = 15°
Knowledge required:
Full Solution:
Given that:
• Tan (A+B) = √3
• Tan (A-B) = 1/√3
According to trigonometry table, we can also write these as:
• Tan (A+B) = √3 as Tan (A+B) = Tan(60°)
• Tan (A-B) = 1/√3 as Tan (A-B) = Tan(30°)
Hence, according to the question,
• A+B = Tan(60°)
• A-B = Tan(30°)
~ Now according to the equation,
~ Now let's find the value of A
~ Now finding the value of B