Math, asked by sweety12, 1 year ago

if tan(A+B)=√3 and tanA=1,then find angle B

Answers

Answered by poojan
94
Tan (A+B) = √3
tan (A+B) = tan 60 degrees
A+B = 60 degrees ------------------- 1

given that,
tan A = 1
tan A = tan 45
A = 45 ------------------------ 2

Substituting 2 in 1,
45 + B = 60
B = 60-45
B = 15 degrees

sweety12: thank u
Answered by Asterinn
13

GIVEN:

tan(A+B)=√3

tanA=1

TO FIND :

tan B

FORMULA USED :

tan(A+B)=  \frac{tanA + tanB}{1 - tanAtanB}

SOLUTION :

tan(A+B)=√3

tanA=1

Now by using the formula =>

⟶tan(A+B)=  \frac{tanA + tanB}{1 - tanAtanB}

put the given values:-

⟶ \sqrt{3} =  \frac{1+ tanB}{1 -( 1 \times tanB)}

now cross multiply :-

⟶  \sqrt{3} (1 - tanB )=  1+ tanB

⟶  \sqrt{3}  - \sqrt{3}tanB =  1+ tanB

⟶  \sqrt{3} - 1 = tanB + \sqrt{3}tanB

⟶  \sqrt{3} - 1 = (1 + \sqrt{3})tanB

⟶   \frac{ \sqrt{3} - 1}{ (1 + \sqrt{3})} =tanB

we know :-

⟶   \frac{ \sqrt{3} - 1}{ (1 + \sqrt{3})} =tan15°

Therefore , TanB = tan15°

therefore angle B = 15°

ANSWER :

angle B = 15°

____________________________________

Other Formulae :-

1. Sin(A+B) = Sin A CosB + Cos A SinB

2. Cos (A+B) = Cos A CosB - Sin ASinB

3. Cos (A-B) = Cos A CosB + Sin ASinB

Similar questions