If tan a+b = 45°, prove that (1+ tan a)(1+tan b) = 2
Answers
Answered by
5
hope this helps....
if this correct.....
please please please mark as brainlist
if this correct.....
please please please mark as brainlist
Attachments:
nayrawanya:
its just a+b =45° not tan a+b
Answered by
4
TAN a+b = 45°
tan a + tan b /1- tan a tan b = 1
tan a + tan b = 1- tan a tan b
tan a + tan b + tan a tan b = 1
by adding 1 on both sides we get
1+ tan a + tan b + tan a tan b =2
1(1+tan a) + tan b (1+ tan a)=2
(1+tan a) (1+tan b)=2
Hence proved
tan a + tan b /1- tan a tan b = 1
tan a + tan b = 1- tan a tan b
tan a + tan b + tan a tan b = 1
by adding 1 on both sides we get
1+ tan a + tan b + tan a tan b =2
1(1+tan a) + tan b (1+ tan a)=2
(1+tan a) (1+tan b)=2
Hence proved
Similar questions