Math, asked by avinash5006, 11 months ago

If tan (A+B) = root 3 and (A - B) = 1/root 3; 0°<A+B <or equal to 90°; A>B , find A and B.

Answer:- A = 45° and B = 15°.

I need step by step solution.
No, need of useless solution .​

Answers

Answered by Mysterioushine
5

tan(a + b) =  \sqrt{3}  \\  \\  =  &gt; tan(a + b) = tan60 \:  \:  \:  \:  \:  \:  \: (tan60 =  \sqrt{3} ) \\  \\  tan \: get \: cancelled \: on \: both \: sides  \\  \\ =  &gt; (a + b) = 60 -  -  - (1) \\  \\ given \: tan(a - b) =  \frac{1}{ \sqrt{3} }  \\  \\  =  &gt; tan(a - b) = tan30 \:  \:  \:  \:  \:  \: (tan30 =  \frac{1}{ \sqrt{3} } ) \\  \\ tan \: gets \: cancelled \: on \: both \: sides \\  \\  =  &gt; (a - b) = 30 -  -  - (2) \\  \\ adding \: eq(1) \: and \: eq(2) \\  \\  =  &gt; a + b = 60 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  a - b = 30 \\  -  -  -  -  -  -  -  -  -  -  -  -  \\    =  &gt; 2a = 90 \\  \\  =  &gt; a = 45 \\  \\ from \: eq(1) \\  \\ 45 + b = 60 \\  \\  =  &gt; b = 15

HOPE IT HELPS !!!!

Answered by sabigpta
0

Answer:

tan (a+b)= √3

tan a+b= 60 tan=60 (tan60= tan get cancelled on both sides

a+b=60 _ _ _ (1)

given tan (a-b) = 1

√13

tan (a-b) =30 (tan30=

tan gets cancelled on both sides

(a-b)=30_ _ _ (2)

adding eq(1) and eq(2)

a+b=60

a-b=30

2a = 90

a=45

from eq(1)

45+b=60

b = 15 is the answer

Mark me as a brainliest

Give me a thanks

Similar questions