Math, asked by cr739, 7 hours ago

if tan β = a/b , then cos β =?​

Answers

Answered by rakeshone
0

Answer:

please mark me brainlist

we have given,

atanα+btanβ=(a+b)tan(

2

α+β

)

⇒tanα+btanβ=atan(

2

α+β

)+btan(

2

α+β

)

⇒a[tanα−tan(

2

α+β

)]=b[tan(

2

α+β

)−tanβ]

usingtheformula:

tanA−tanB=

cosA.cosB

sin(A−B)

Now,substitutingtheformulabothside:

⇒a

cosα.cos(

2

α+β

)

sin(α−

2

α+β

)

=b

cosβ.cos(

2

α+β

)

sin(

2

α+β

−β)

⇒a

cosα

sin(α−

2

α+β

)

=b

cosβ

sin(

2

α+β

−β)

⇒a

cosα

sin(

2

α−β

)

=b

cosβ

sin(

2

α−β

)

cosα

a

=

cosβ

b

∴acosβ=bcosαprove.

Answered by rajgobindadham
1

Answer: cos β=\frac{b}{\sqrt{a^{2} +b^{2} }}

Step-by-step explanation:

tan β= a/b

or, \frac{perpendicular}{base}=\frac{a}{b}

now, hypotenuse will be=\sqrt{a^{2} +b^{2} }

We know that cos β=\frac{base}{hypotenuse}=\frac{b}{\sqrt{a^{2} +b^{2} }}

PLEASE MARK ME AS THE BRAINLIEST. THANK YOU.

Similar questions