Math, asked by tanujadhali143, 1 day ago

if tan A + sec a is equal to X by Y then prove that cos A is equal to 2 x y divided by X square + Y square.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm \: secA + tanA =  \dfrac{x}{y}  -  -  - (1) \\

We know,

\rm \:  {sec}^{2}A -  {tan}^{2}A = 1 \\

can be rewritten as

\rm \: (secA + tanA)(secA - tanA) = 1 \\

On substituting the value from equation (1), we get

\rm \: \dfrac{x}{y}(secA - tanA) = 1 \\

\rm\implies \:secA - tanA = \dfrac{y}{x}  -  -  - (2) \\

On adding equation (1) and (2), we get

\rm \: 2secA = \dfrac{x}{y}  + \dfrac{y}{x}  \\

\rm \: 2secA = \dfrac{ {x}^{2} +  {y}^{2}  }{xy} \\

\rm \: secA = \dfrac{ {x}^{2} +  {y}^{2}  }{2xy} \\

\rm\implies \:cosA =  \dfrac{2xy}{ {x}^{2}  +  {y}^{2} }  \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions