Math, asked by palak5084, 1 month ago

If tan alpha+ cot alpha=2,then tan^20alpha+cot^20alpha=

Answers

Answered by jitendra12iitg
2

Answer:

The answer is 2

Step-by-step explanation:

Given  \tan\alpha+\cot\alpha=2

          \Rightarrow \tan\alpha+\dfrac{1}{\tan\alpha}=2

Since  \tan\alpha\cot\alpha=1

           \Rightarrow \dfrac{\tan^2\alpha+1}{2}=\tan\alpha\\\\\Rightarrow \tan^2\alpha+1=2\tan\alpha\\\Rightarrow \tan^2\alpha-2\tan\alpha+1=0\\\Rightarrow (\tan\alpha-1)^2=0\\\Rightarrow \tan\alpha=1\therefore \cot\alpha=\dfrac{1}{\tan\alpha}=1

Therefore \tan^{20}\alpha+\cot^{20}\alpha=(1)^{20}+1^{20}=1+1=2

Similar questions