Math, asked by SoumyaDutta7053, 1 year ago

If tan (alpha)= n . tan(beta) and sin(alpha)= m . sin (beta) prove that sin(alpha)=(√n^2-m^2)/(n^2-1)

Answers

Answered by vyaswanth
0

Step-by-step explanation:

 \tan( \alpha )  = n \tan( \beta )

 \sin( \alpha )  = m \sin( \beta )

 \frac{ \sin( \alpha ) }{ \ \cos ( \ \alpha  ) }  = n \times  \frac{ \sin( \beta ) }{ \cos( \beta ) }

 \frac{m \sin( \beta ) }{ \cos( \alpha ) }  = n \times  \frac{ \sin( \beta ) }{ \cos( \beta ) }

   \frac{ \cos( \alpha ) }{ \cos( \beta ) }  =  \frac{n}{m}

then using this expansion find given

Similar questions