Math, asked by kabilan5301, 1 year ago

if tan(alpha+theta) = ntan (alpha-theta) then show that : (n+1)sin 2theta=(n-1)sin 2alpha

Answers

Answered by pinquancaro
41

Given: \tan(\alpha + \Theta) = n \tan(\alpha - \theta)

To Prove: (n+1) \sin2\theta = (n-1)\sin2\alpha

proof:

Consider \tan(\alpha + \Theta) = n \tan(\alpha - \theta)

By using the trigonometric identities

\tan(A+B)=\frac{\tan A + \tan B}{1 - \tan A \tan B}

and \tan(A-B)=\frac{\tan A - \tan B}{1 + \tan A \tan B}

Therefore,

\frac{\tan \alpha +\tan \Theta }{1-\tan\alpha \tan \Theta }= n[ \frac{\tan \alpha -\tan \Theta }{1+\tan\alpha \tan \Theta }]

({\tan \alpha +\tan \Theta })({1+\tan\alpha \tan \Theta })= ({1-\tan \alpha \tan \Theta })({n \tan\alpha -n \tan \Theta })

\tan \alpha +\tan ^{2}\alpha \tan \Theta +\tan \Theta +\tan\alpha\tan^{2} \Theta = n\tan \alpha-n \tan \Theta - n \tan^{2}\alpha \tan \Theta +n \tan \alpha \tan ^{2}\Theta

\tan \theta(1+\tan ^{2}\alpha) +n\tan \Theta(1+\tan^{2}\alpha) = n\tan \alpha(1+\tan ^{2}\Theta )- \tan \alpha (1+\tan^{2}\theta)

(n+1)\tan \theta(1+\tan ^{2}\alpha) = (n-1)\tan \alpha(1+\tan ^{2}\Theta )

\frac{(n+1)\tan \theta}{1+\tan^{2}{\theta}}=\frac{(n-1)\tan \alpha}{1+\tan^{2}{\alpha}}

Multiplying both sides of the above equation by 2,

\frac{(n+1)2\tan \theta}{1+\tan^{2}{\theta}}=\frac{(n-1)2\tan \alpha}{1+\tan^{2}{\alpha}}

By applying the trigonometric identities, we get

(n+1)\sin 2\theta = (n-1)\sin 2\alpha

Hence, proved.


Similar questions