Math, asked by dhrubapoddar12345678, 7 months ago

IF tan AtanB = tan 45° so; Sin (A+B) = ?​

Answers

Answered by kundanconcepts800
0

We have

CosACosB- SinASinB =0

Cos (A+B) =0

Now, Sin (A +B) =square root of [1 - Cos ^2 (A+B)]

= 1

Answered by sonisiddharth751
3

the value of sin(A +B ) = ½

Step-by-step explanation:

 \\  \sf \large \red{Given} \\

  • tanA + tanB = tan45°

 \\  \sf \large \red{To \: find} \\

  • the value of Sin (A+B) .

 \\  \sf \large \red {Solution} \\

 \sf \: tanA + tanB = tan 45 \degree \\  \\ \sf \: tan(A +B  ) =tan 45 \degree \\

tan is taken as common .

  \sf \:  \cancel{tan} \: (A +B  ) = \cancel{tan } \: 45  \degree \\  \\ \boxed{ \sf \: A +B   = 45 \degree} \\

Now, value of sin ( A + B ) :-

we have find out the value of A + B = 45° .

So,

 \underline{\boxed{\sf \:sin 45\degree \:  =  \dfrac{1}{ \sqrt{2} }}} \\  \\  \sf \: Here, \: we \: have \: put \: the \: value \: of \:A \: and \: B\:  \\ \\

Hence, the value of sin(A +B ) = ½

 \\

Trigonometric tabe for some angles :-

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Similar questions