Math, asked by ADITYAxPRATEEK, 8 months ago

if tanΘ + cotΘ = 2 find tan² + cot²θ

Answers

Answered by tejasbenibagde76
1

\red{\bold{Answer:}}

given \: that \:  \\ tanθ + cotθ = 2 \\ on \: squaring \:  \\  {(tanθ + cotθ)}^{2}  =  {2}^{2}  \\  {tan}^{2} θ + 2tanθcotθ +  {cot}^{2} θ = 4 \\  {tan}^{2} θ +  {cot}^{2} θ + 2 = 4 \\ {tan}^{2} θ +  {cot}^{2} θ = 4 - 2 \\{tan}^{2} θ +  {cot}^{2} θ = 2

Your answer is 2

hope it helps to you☺️

Answered by shravani226
1

I HOPE MY ANSWER WILL HELP YOU

PLEASE MARK ME BRAINLIEST

Answer:

2

Step-by-step explanation:

tanx + cotx = 2 \\  {(tanx + cotx)}^{2}  =  {2}^{2}  \\  {tan}^{2} x +  {cot}^{2} x + 2tanxcotx  = 4 \\  {tan}^{2} x +  {cot}^{2} x + 2  \times \frac{sinx}{cosx}  \times  \frac{cosx}{sinx}  = 4 \\  {tan}^{2} x +  {cot}^{2} x = 4 - 2 \\  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2

Similar questions