Math, asked by annu650298, 18 hours ago

If tan α + cot α = 2, then tan20α + cot20α =?​

Answers

Answered by sam15521
5

Answer:

tan α + cot α = 2

gives α=45°.

So tan α = cot α

= 1 tan20α + cot20α

= 120 + 120

= 1+1 = 2

hope it helped you dear friend

Answered by pulakmath007
3

SOLUTION

GIVEN

\displaystyle \sf{ \tan  \alpha  + \cot  \alpha  = 2}

TO DETERMINE

\displaystyle \sf{ {\tan}^{20}  \alpha + {\cot}^{20}  \alpha  }

EVALUATION

Here it is given that

\displaystyle \sf{ \tan  \alpha  + \cot  \alpha  = 2}

\displaystyle \sf{ \implies \: \tan  \alpha + \frac{1}{\tan  \alpha } = 2}

\displaystyle \sf{ \implies \: \frac{{\tan}^{2}  \alpha + 1}{\tan  \alpha } = 2}

\displaystyle \sf{ \implies \: {\tan}^{2}  \alpha  + 1 = 2\tan  \alpha }

 \displaystyle \sf{ \implies \: {\tan}^{2}  \alpha  + 1 - 2\tan  \alpha  = 0}

\displaystyle \sf{ \implies \: {(\tan  \alpha  - 1)}^{2} = 0}

\displaystyle \sf{ \implies \: (\tan  \alpha  - 1) = 0}

\displaystyle \sf{ \implies \: \tan  \alpha   =  1}

\displaystyle \sf{ \implies \cot  \alpha   =  1}

This gives

\displaystyle \sf{ {\tan}^{20}  \alpha  + {\cot}^{20}  \alpha }

 \displaystyle \sf{ = {1}^{20} + {1}^{20} }

 \sf{ =1 + 1}

 = 2

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions