If tan inverse 1/x plus cot inverse 1/y plus cot inverse 1/z equal to pi/2 provethat xy+yz+zx=1
Answers
Answered by
0
Answer:
please mark me as brainlest
Step-by-step explanation:
tan −1
x+tan
−1
y+tan
−1
z=
2
π
Let tan
−1
x=α
⇒tanα=x
tan
−1
y=β
⇒tanβ=y
tan
−1
z=γ
⇒tanγ=z
⇒α+β+γ=
2
π
tan(α+β+γ)=
1−(tanαtanβ+tanβtanγ+tanγtanα)
tanα+tanβ+tanγ−tanαtanβtanγ
=tan
2
π
=not defined
⇒ Denominator=0
⇒tanαtanβ+tanβtanγ+tanγtanα=1
⇒xy+yz+zx=1.
Similar questions