Math, asked by spidey3104, 3 months ago

If
tan o+coto=5, find the value of
tan ²0+ cot²0​

Answers

Answered by MrMonarque
18

Solution:-

Given,

tanθ+cotθ=5

Now squaring both sides we get,

⇒\;{\sf{(tan θ+cot θ)² = (5)²}}

⇒\;{\sf{(tan²θ+cot²θ+2.tanθ.cotθ) = 25}}

⇒\;{\sf{tan²θ+cot²θ=25−2}}

\blue{\bold{tanθ.cotθ=1}}

\Large{\bold{⇒\;tan²θ+cot²θ = \red{23}.}}

Hope It Helps You ✌️

Answered by Anonymous
31

Step-by-step explanation:

Given,

tanθ+cotθ=5

Now squaring both sides we get,

Answer

\;{\sf{(tan θ+cot θ)² = (5)²}}

\;{\sf{(tan²θ+cot²θ+2.tanθ.cotθ) = 25}}

\;{\sf{tan²θ+cot²θ=25−2}}

{\bold{tanθ.cotθ=1}}

\Large{\bold{⇒\;tan²θ+cot²θ = \red{23}.}}

Similar questions