Math, asked by shivambhosale0074, 5 months ago

If tan ø =1 then, find the value of sinø + cos ø/secø+ cosec ø​

Answers

Answered by EthicalElite
15

 \huge \underline{\underline{\tt Correct \: Question :}}

If tanθ = 1, find value of :

  •  \sf \dfrac{sin\theta + cos\theta}{sec \theta + cosec\theta}

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

 \huge \underline{\underline{\tt Answer :}}

⠀ ⠀⠀ ⠀

Given :

  • tanθ = 1

⠀ ⠀⠀ ⠀

To Find :

  •  \sf \dfrac{sin\theta + cos\theta}{sec \theta + cosec\theta} = ?

⠀ ⠀⠀ ⠀

Solution :

We are given :

tanθ = 1

⠀ ⠀⠀ ⠀

We also know that :

tan45° = 1

 \sf : \implies tan\theta = tan45^{\circ}

 \sf : \implies \theta = 45^{\circ}

⠀ ⠀⠀ ⠀

Now, we have to find :

 \sf \dfrac{sin\theta + cos\theta}{sec \theta + cosec\theta}

⠀ ⠀⠀ ⠀

By, filling value of θ = 45° :

 \sf : \implies \dfrac{sin45^{\circ} + cos45^{\circ}}{sec 45^{\circ} + cosec45^{\circ}}

⠀ ⠀⠀ ⠀

Now, we have :

  • sin45° =  \sf \dfrac{1}{\sqrt{2}}

  • cos45° =  \sf \dfrac{1}{\sqrt{2}}

  • sec45° =  \sf \sqrt{2}

  • cosec45° =  \sf \sqrt{2}

⠀ ⠀⠀ ⠀

By filling values :

 \sf : \implies \dfrac{\dfrac{1}{\sqrt{2}} + \dfrac{1}{\sqrt{2}}}{\sqrt{2} + \sqrt{2}}

 \sf : \implies \dfrac{\dfrac{1+1}{\sqrt{2}}}{2\sqrt{2}}

 \sf : \implies \dfrac{\dfrac{2}{\sqrt{2}}}{\dfrac{2\sqrt{2}}{1}}

 \sf : \implies \dfrac{2}{\sqrt{2}} \times \dfrac{1}{2\sqrt{2}}

 \sf : \implies \dfrac{2}{\sqrt{2} \times 2\sqrt{2}}

 \sf : \implies \dfrac{2}{2 (\sqrt{2})^{2}}

 \sf : \implies \dfrac{2}{2 \times 2}

 \sf : \implies \cancel{\dfrac{2}{4}}

 \sf : \implies \dfrac{1}{2}

⠀ ⠀⠀ ⠀

 \bf \therefore \: value \: of \: \dfrac{sin\theta + cos\theta}{sec \theta + cosec\theta} = \dfrac{1}{2}

Similar questions