Math, asked by geethab2530, 22 days ago

if tan ø=7/8,then what is (1+sinø)(1-sinø)/(1+cosø)(1-cosø)​

Answers

Answered by SparklingBoy
109

-------------------------------

▪ Given :-

 \bf{  \tan \phi =  \dfrac{7}{8} }

-------------------------------

▪To Find :-

 \dfrac{(1 +  \sin \phi)(1 -  \sin\phi)}{(1  +   \cos\phi)(1 -  \cos\phi)}

-------------------------------

▪ Used Formulae :-

 \pmb{ \maltese \:  \:  \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} } \\  \\  \pmb{ \maltese \:  \:  \: \sin {}^{2}  \theta +  { \cos}^{2}  \theta = 1}  \\  \\  \pmb{ \maltese \:  \:  \:  \dfrac{ \cos \theta}{ \sin \theta }  =  \cot \theta} \\  \\  \pmb{ \maltese \:  \:  \: \cot \theta =  \dfrac{1}{ \tan \theta}  }

-------------------------------

▪ Solution :-

We Have,

\dfrac{(1 +  \sin \phi)(1 -  \sin\phi)}{(1  +   \cos\phi)(1 -  \cos\phi)}   \\  \\ =\frac{1 {}^{2}  -  { \sin}^{2}  \phi}{1 {}^{2}  -  { \cos}^{2} \phi }    \\  \\  =  \frac{1  -  { \sin}^{2}  \phi}{1 -  { \cos}^{2} \phi }  \\  \\  =  \frac{ { \cos}^{2}  \phi}{ { \sin}^{2} \phi }  \\  \\  =  { \cot}^{2}  \phi \\  \\  =  \frac{ 1}{ { \tan}^{2} \phi }  \\  \\  =  \frac{ \:  \:  \: 1 \:  \:  \: }{ \big( \frac{7}{8} \big) {}^{2}  }  \\  \\  =   \bigg(\frac{8 { }^{} }{7} \bigg)   {}^{ {}^{ {}^{ {}^{ {}^{2} } } } }  \\  \\  = \pmb{ \dfrac{64}{49}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------

\large\bf Fundamental \: Trigonometric \\ \Large \bf Identities \\ \\ \maltese \: \: \:\sin^2\theta + \cos^2\theta=1 \\ \\ \maltese \: \: \: 1+\tan^2\theta = \sec^2\theta \\ \\\maltese \: \: \: 1+\cot^2\theta = \text{cosec}^2 \, \theta

-------------------------------

Answered by Anonymous
105

\dfrac{(1 +  \sin \phi)(1 -  \sin\phi)}{(1  +   \cos\phi)(1 -  \cos\phi)}   \\  \\ =\frac{1 {}^{2}  -  { \sin}^{2}  \phi}{1 {}^{2}  -  { \cos}^{2} \phi }    \\  \\  =  \frac{1  -  { \sin}^{2}  \phi}{1 -  { \cos}^{2} \phi }  \\  \\  =  \frac{ { \cos}^{2}  \phi}{ { \sin}^{2} \phi }  \\  \\  =  { \cot}^{2}  \phi \\  \\  =  \frac{ 1}{ { \tan}^{2} \phi }  \\  \\  \bigg(\frac{8 { }^{} }{7} \bigg)   {}^{ {}^{ {}^{ {}^{ {}^{2} } } } }  \\  \\  =\mathfrak{\pink{  \LARGE\dfrac{64}{49}}}

Similar questions