if tan Q =1/2find 1+cot2Q
Answers
Answered by
0
Step-by-step explanation:
Valueof
tan
2
θ+cot
2
θ=2
Step-by-step explanation:
Given \: tan\theta+cot\theta=2\:---(1)Giventanθ+cotθ=2−−−(1)
/* On Squaring both sides of the equation, we get
\left(tan\theta+cot\theta\right)^{2}=2^{2}(tanθ+cotθ)
2
=2
2
\implies tan^{2}\theta+cot^{2}\theta+2 tan\theta cot\theta = 4⟹tan
2
θ+cot
2
θ+2tanθcotθ=4
\implies tan^{2}\theta+cot^{2}\theta+2 \times 1 = 4⟹tan
2
θ+cot
2
θ+2×1=4
/* tanAcotA = 1 */
\implies tan^{2}\theta+cot^{2}\theta = 4-2⟹tan
2
θ+cot
2
θ=4−2
\implies tan^{2}\theta+cot^{2}\theta = 2⟹tan
2
θ+cot
2
θ=2
Therefore,
tan^{2}\theta+cot^{2}\theta = 2tan
2
θ+cot
2
θ=2
•••♪
Answered by
0
Step-by-step explanation:
Mark me as brainliest..
Attachments:
Similar questions