Math, asked by sanikumar1488, 9 months ago

if tan Q =1/2find 1+cot2Q​

Answers

Answered by NetraJ7
0

Step-by-step explanation:

Valueof

tan

2

θ+cot

2

θ=2

Step-by-step explanation:

Given \: tan\theta+cot\theta=2\:---(1)Giventanθ+cotθ=2−−−(1)

/* On Squaring both sides of the equation, we get

\left(tan\theta+cot\theta\right)^{2}=2^{2}(tanθ+cotθ)

2

=2

2

\implies tan^{2}\theta+cot^{2}\theta+2 tan\theta cot\theta = 4⟹tan

2

θ+cot

2

θ+2tanθcotθ=4

\implies tan^{2}\theta+cot^{2}\theta+2 \times 1 = 4⟹tan

2

θ+cot

2

θ+2×1=4

/* tanAcotA = 1 */

\implies tan^{2}\theta+cot^{2}\theta = 4-2⟹tan

2

θ+cot

2

θ=4−2

\implies tan^{2}\theta+cot^{2}\theta = 2⟹tan

2

θ+cot

2

θ=2

Therefore,

tan^{2}\theta+cot^{2}\theta = 2tan

2

θ+cot

2

θ=2

•••♪

Answered by akpraju26
0

Step-by-step explanation:

Mark me as brainliest..

Attachments:
Similar questions