if tan Q + 1/tan Q =2 then find value of tan^2Q+1/tan^2 Q
Answers
Answered by
3
Answér :
tan²Q + 1/tan²Q = 2
Solution :
- Given : tanQ + 1/tanQ = 2
- To find : tan²Q + 1/tan²Q = ?
We have ;
tanQ + 1/tanQ = 2
Now ,
Squaring both the sides , we have ;
=> (tanQ + 1/tanQ)² = 2²
=> (tanQ)² + (1/tanQ)² + 2tanQ•(1/tanQ) = 4
=> tan²Q + 1/tan²Q + 2 = 4
=> tan²Q + 1/tan²Q = 4 - 2
=> tan²Q + 1/tan²Q = 2
Hence ,
tan²Q + 1/tan²Q = 2 .
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
Alternative method :
We have ,
=> tanQ + 1/tanQ = 2
=> (tan²Q + 1)/tanQ = 2
=> tan²Q + 1 = 2tanQ
=> tan²Q - 2tanQ + 1 = 0
=> (tanQ)² - 2×tanQ×1 + 1² = 0
=> (tanQ - 1)² = 0
=> tanQ - 1 = 0
=> tanQ = 1
=> tanQ = tan45°
=> Q = 45°
Now ,
=> tan²Q + 1/tan²Q = tan²45° + 1/tan²45°
=> tan²Q + 1/tan²Q = 1² + 1/1²
=> tan²Q + 1/tan²Q = 1 + 1
=> tan²Q + 1/tan²Q = 2
Hence ,
tan²Q + 1/tan²Q = 2 .
Similar questions