Math, asked by sannikaashetty, 26 days ago

if tanΘ= root 2-1 , prove that sonΘcosΘ= root2 /4

Answers

Answered by Anonymous
31

Step-by-step explanation:

As per the information given in the question, We have :

  • Tan θ = √2 - 1

We are asked to prove that sin θ cos θ = √2/4

Here, In this question we have to find sin θ & cos θ first, Then we will put those values in sin θ cos θ & Simplify it until it becomes √2/4.

\longmapsto \rm  \tan  \theta  =  \dfrac{opp}{adj}

\longmapsto \rm  \tan  \theta  =  \dfrac{ \sqrt{2}  - 1}{1}

« Now, By using Pythagoras theorm,

(AC)² = (AB)² + (BC)²

→ (hypotenuse)² = (opposite)² + (adjacent

→ (h)² = (√2 - 1)² + (1)²

→ (h)² = 3 - 2√2 + 1

→ (h)² = 4 - 2√2

→ h = √4 - 2√2

\longmapsto \rm  \sin  \theta  =  \dfrac{opp}{hyp}

\longmapsto \rm  \sin  \theta  =  \dfrac{ \sqrt{2}  - 1}{ \sqrt{4 -  2\sqrt{2} } }

\longmapsto \rm  \cos  \theta  =  \dfrac{adj}{hyp }

\longmapsto \rm  \cos  \theta  =  \dfrac{1}{ \sqrt{4 - 2 \sqrt{2}}  }

\longmapsto \rm  \sin \theta \cos  \theta  =  \dfrac{1}{ \sqrt{4 - 2 \sqrt{2}}  }  \times \dfrac{ \sqrt{2}  - 1}{ \sqrt{4 -  2\sqrt{2}}  }

⌬ √a √a = a

\longmapsto \rm  \sin \theta \cos  \theta  =  \dfrac{\sqrt{2}  - 1}{ 4 - 2 \sqrt{2} }

On rationalizing the denominator,

\longmapsto \rm  \sin \theta \cos  \theta  =  \dfrac{\sqrt{2}  - 1}{ 4 - 2 \sqrt{2} }   \times  \dfrac{4 + 2 \sqrt{2} }{4 + 2 \sqrt{2} }

\longmapsto \rm  \sin \theta \cos  \theta  =  \dfrac{(\sqrt{2}  - 1)(4 + 2 \sqrt{2} )}{ (4 - 2 \sqrt{2})(4 + 2 \sqrt{2}) }

\longmapsto \rm  \sin \theta \cos  \theta  =  \dfrac{4 \sqrt{2} - 4 + 4 - 2 \sqrt{2}  }{  {(4)}^{2}  -  {(2 \sqrt{2} )}^{2} }

\longmapsto \rm  \sin \theta \cos  \theta  =  \dfrac{4 \sqrt{2} - 2 \sqrt{2}  }{  16  -  8 }

\longmapsto \rm  \sin \theta \cos  \theta  =  \dfrac{2 \sqrt{2}  }{  8}

\longmapsto \rm  \sin \theta \cos  \theta  =  \dfrac{ \sqrt{2}  }{  4}

Hence, proved!

M o r e⠀F o r m u l a e :

  • \sf sin ( A + B ) = \bf{sin A cos B + cos A sin B}

  • \sf cos ( A + B ) = \bf{cos A cos B - sin A sin B}

  • \sf tan ( A + B ) = \bf{tan A + tan B/1 - tan A tan B}

  • \sf tan ( A - B ) = \bf{ tan A - tan B/1 + tan A tan B}

  • \sf cos ( A - B )  = \bf{ cos A cos B - sin A sin B}

  • \sf sin ( A - B )   = \bf{ sin A cos B - cos A sin B}
Answered by TYKE
13

Question :

if tan θ = √2-1 , prove that sin θ cos θ= √2 /

Solution :

So according to the problem tan θ = √2 – 1

tan θ = Perpendicular/Base

√2 - 1 can be written as :

 \frac{ \sqrt{2} - 1 }{1}

So, Base = √2 – 1 and the perpendicular = 1

So as in the pic we can see the hypotenuse is not given so we need to apply trigonometry to find out the hypotenuse

By applying pythagoras theorem we get

(Hypotentuse)² = (Perpendicular)² + (Base)²

(Hypotentuse)² = (√2 – 1)² + (1)²

(Hypotentuse)² = (√2)² – 2•√2•1 + (1)² + (1)²

(Hypotentuse)² = 2 – 2√2 + 1 + 1

(Hypotentuse)² = 2 – 2√2 + 2

(Hypotentuse)² = 4 – 2√2

 \sf Hypotentuse  =  \sqrt{4 - 2 \sqrt{2} }

Using sin θ formula we get

sin θ = Perpendicular/Hypotentuse

  \sf sin \:  θ =  \frac{ \sqrt{2}  - 1}{ \sqrt{4 - 2 \sqrt{2} } }

cos θ = Base/Hypotentuse

 \sf cos \:  \theta =  \frac{1}{ \sqrt{4-2\sqrt{2}}}

Now as given we need to prove

sin θ cos θ = √2/4

By putting the values we get

 \sf  \frac{ \sqrt{2}  - 1}{ \sqrt{4 - 2 \sqrt{2} } }  \times  \frac{1}{ \sqrt{4 - 2 \sqrt{2} } }

The denominator is common so it will be squared

 \sf \frac{ \sqrt{2}  - 1}{ {( \sqrt{4 - 2 \sqrt{2} } })^{2} } = \frac{ \sqrt{2} }{4}

  \sf\frac{ \sqrt{2}  - 1}{4 - 2 \sqrt{2} }  =  \frac{ \sqrt{2} }{4}

Now by rationalising the denominator on the L.H.S. we get

 \sf \frac{( \sqrt{2} - 1)(4 + 2 \sqrt{2})  }{(4 - 2 \sqrt{2} )(4 + 2 \sqrt{2}) }

  \sf\frac{4 \sqrt{2} +  4  - 4 - 2 \sqrt{2}  }{ {(4)}^{2} -  {(2 \sqrt{2}) }^{2}  }  =   \frac{ \sqrt{2} }{4}

 \sf \frac{4 \sqrt{2}   + \cancel{ 4} -  \cancel{4} - 2 \sqrt{2} }{16 - 8}  =  \frac{ \sqrt{2} }{4}

  \sf\frac{2 \sqrt{2} }{8}  =  \frac{ \sqrt{2} }{4}

 \sf \frac{ \cancel{2} \sqrt{2} }{ \cancel{8}}  =  \frac{ \sqrt{2} }{4}

 \sf \frac{ \sqrt{2} }{4}  =  \frac{ \sqrt{2} }{4}

Hence, Proved !!

Similar questions