If tan =
sin cos
1− 2
, show that tan ( − ) = (1 – n) tan .
Answers
Answer:
tanβ=
tanβ= 1−nsin
tanβ= 1−nsin 2
tanβ= 1−nsin 2 α
tanβ= 1−nsin 2 αnsinαcosα
tanβ= 1−nsin 2 αnsinαcosα
tanβ= 1−nsin 2 αnsinαcosα =
tanβ= 1−nsin 2 αnsinαcosα = sec
tanβ= 1−nsin 2 αnsinαcosα = sec 2
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 α
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα =
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 α
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα =
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 α
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)=
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβ
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ =
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1−
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβ
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβtanαntanβ
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβtanαntanβ
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβtanαntanβ
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβtanαntanβ tanα−
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβtanαntanβ tanα− 1+(1−n)tan
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβtanαntanβ tanα− 1+(1−n)tan 2
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβtanαntanβ tanα− 1+(1−n)tan 2 α
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβtanαntanβ tanα− 1+(1−n)tan 2 αntanα
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβtanαntanβ tanα− 1+(1−n)tan 2 αntanα
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβtanαntanβ tanα− 1+(1−n)tan 2 αntanα
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβtanαntanβ tanα− 1+(1−n)tan 2 αntanα
tanβ= 1−nsin 2 αnsinαcosα = sec 2 α−ntan 2 αntanα = 1+tan 2 α−ntan 2 αntanα = 1+(1−n)tan 2 αntanα ∴tan(α−β)= 1−tanαtanβtanα−tanβ = 1− 1−tanαtanβtanαntanβ tanα− 1+(1−n)tan 2 αntanα =(1−n)tanα